太阳成集团tyc234cc官网邀请专家申请表
报告人 | 王薇 | 单位 | |
报告题目 | Iterative Runge-Kutta-type methods with convex penalty for inverse problems in Hilbert space | ||
报告时间 | 2021年10月17日周日上午9:40-10:20 | 地点 | 腾讯会议 439 535 667 |
邀请人 | 钟敏 | ||
报告摘要 | A s-stage Runge-Kutta-type iterative method with convex penalty for solving nonlinear ill-posed problems are proposed and analyzed in this paper. The approach is developed by using a family of Runge-Kutta-type methods to solve an initial value problem. The convergence and regularity of the proposed method are obtained under certain conditions. The reconstruction results of the proposed method for some special cases are studied through the numerical experiments on inverse potential problem and diffuse optical tomography. The numerical results indicate that the developed Runge-Kutta-type regularization method with convex penalty yield stable approximations to true solutions, especially the implicit schemes have obvious advantages on allowing a wider range of step length, reducing iterative number and saving computation time. | ||
报告人简介 | 王薇,理学博士,教授,硕士生导师。2011年4月在哈尔滨工业大学获得理学博士学位。2011年7月至2013年7月在复旦大学从事博士后研究工作。研究方向为反问题理论与计算,也包括地震波全波形反演、EIT问题、CT不完全数据的图像重构等应用。主持国家自然科学基金项目2项(青年基金项目、面上项目),浙江省自然科学基金项目2项(青年基金、一般项目),在Numer Math、Inverse Problems等有影响力的国际学术期刊上发表SCI论文20余篇。 |