太阳成集团tyc234cc官网邀请专家申请表
报告人 | 董昭 | 单位 | 中国科学院数学与系统科学研究院 |
报告题目 | The concentration of limiting invariant measure for stochastic dynamic system with local Lipschitz coefficients in 𝑅^𝑑 | ||
报告时间 | 2021.10.26 19:30-20:30 | 地点 | 腾讯会议 ID:586 953 186 会议密码:1026 |
邀请人 | 乔会杰 | ||
报告摘要 | In this talk, I consider the zero-noise limit of the invariant measure 𝜇_𝜀 of the SDE defined on 𝑅^𝑑 with local Lipschitz coefficients and more than one ergodic state. Our result illustrates that, under some certain conditions, the 𝜇_𝜀 weakly converges to a linear combination of Dirac measure, which supports on some stable sets of the corresponding ODE. To make our result more intuitive, I will first give some numerical simulations of examples. Secondly, I will present the main results of our work with brief proofs, which are generalizations of the classic Freidlin-Wentzell theory. Finally, I will analyze the examples above theoretically. This talk is based on the joint work with Fan Gu and Liang Li. | ||
报告人 简介 | 董昭研究员1996年博士毕业于中科院应用数学研究所。主要从事狄氏型与马氏过程、随机过程、随机(偏)微分方程理论研究,特别是在随机流体力学和多遍历态的随机动力系统有比较深入的研究。在国际期刊发表论文50余篇。主持国家自然科学基金委重点项目一项、面上项目两项,参加重点和面上多项,是973项目和基金委创新研究群体的主要成员。和他人合作获得教育部自然科学二等奖。任北京航空航天大学兼职博导,中国科学院大学岗位教授。 |