太阳成集团tyc234cc官网邀请专家申请表
报告人 | 单位 | 美国伍斯特理工学院 | |
报告题目 | High-order numerical methods for integral fractional Laplacian: analysis, algorithm and applications | ||
报告时间 | 12月13日周五 10:00-11:00 | 地点 | 太阳成集团tyc234cc官网 第二报告厅 |
邀请人 | 孙志忠 曹婉容杜睿 | ||
报告摘要 | The fractional Laplacian is a promising mathematical tool due to its ability to capture the anomalous diffusion and model the complex physical phenomenon with long range interaction. One of important applications of fractional Laplacian is a turbulence intermittency model of fractional Navier-Stokes equation. However efficient computation of this model on bounded domains is challenging as highly accurate and efficient numerical methods are not yet available. The bottleneck for efficient computation lies in the low accuracy and high computational cost of discretizing the fractional Laplacian operator. The main reasons are due to nonlocal nature and intrinsic singularity of the fractional Laplacian. To reduce the complexity and computational cost, we consider two numerical methods, finite difference and spectral method with quasi-linear complexity, which are summarized as follows. (1)We propose a simple and easy-to-implement fractional centered difference approximation to the fractional Laplacian on a uniform mesh using generating functions.The weights or coefficients of the fractional centered formula can be readily computed using the fast Fourier transform. (2)We present spectral Galerkin methods to accurately solve the fractional advection-diffusion-reaction equations. In spectral methods on a ball, the evaluation of fractional Laplacian operator can be straightforward thanks to the pseudo-eigen relation. For general smooth computational domains, we propose the use of spectral methods enriched by singular functions which characterizes the inherent boundary singularity of the fractional Laplacian. | ||
报告人简介 | 郝朝鹏博士于2010年-2017年在太阳成集团tyc234cc官网攻读研究生,并获得博士学位。2015-2017年攻读博士学位期间,先后在美国普渡大学和美国伍斯特理工学院进行为期两年的博士联合培养。2017年开始在美国伍斯特理工学院担任助理研究员并攻读博士学位。已在SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, Journal of Computational Physics 等期刊发表文章十余篇。 目前研究兴趣包括随机微分方程数值解、分数阶微分方程数值解、机器学习和深度神经网络等。 |