太阳成集团tyc234cc官网邀请专家申请表
报告人 | 单位 | 上海大学 | |
报告题目 | The DG methods for typical time-fractional partial differential equations
| ||
报告时间 | 1月3日 (星期五) 14:00-15:00 | 地点 | 太阳成集团tyc234cc官网 第二报告厅 |
邀请人 | 孙志忠 | ||
报告摘要 | In this talk, we present the discontinuous Galerkin (DG) finite element methods for typical time-fractional partial differential equations (TFPDEs): reaction-diffusion equation, reaction-diffusion-wave equation, cable equation, and time fractional conservation law, where the time fractional derivative is in the sense of Caputo. The existence, uniqueness, and regularity of solutions of the above three kinds of equations are studied. The stability, convergence, and error estimates of the derived DG schemes are displayed for the above TFPDEs. And the numerical examples are also included which support the theoretical analysis.
| ||
报告人简介 | 1998年获上海大学计算数学专业博士学位,随后留校任教,2007年任教授、博士生导师。其主要研究方向为:分数阶偏微分方程数值计算等。在Appl Numer Math、Fract Calc App Anal、J Comput Phys、J Sci Comput、Numer Methods PDE、SIAM J Numer Anal、SIAM J Sci Comput等SCI杂志上发表近100篇文章,SCI他引近3600次,ESI高被引论文11篇。他现任Fractional Calculus and Applied Analysis、Int J Comput Math等SCI杂志编委,任德国德古意特出版社系列丛书“应用科学和工程中的分数阶微积分”主编(Editor-in-chief and founding editor of the book series: Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Germany )。撰写出版分数阶微分方程数值方法学术专著两部.
|