太阳成集团tyc234cc官网邀请专家申请表
报告人 | 单位 | 武汉大学 | |
报告题目 | A unified approach for constructing DtN-type ABCs of the 1D discrete Schrodinger systems | ||
报告时间 | 1月3日 (星期五) 15:00-16:00 | 地点 | 太阳成集团tyc234cc官网 第二报告厅 |
邀请人 | 孙志忠 | ||
报告摘要 | Exact Dirichlet-to-Neumann (DtN)-type artificial boundary con- ditions (ABCs) are constructed for the 1D nonlocal Schro ̈dinger equation. We first introduce the asymptotically compatible scheme to discretize the spa- tially nonlocal operator. After that, we approximate the time derivative by the Crank-Nicolson scheme. Two ingredients play the key role of designing the DtN-type ABCs for the fully discrete system. One is the iteration technique for a second-order matrix difference equation to achieve the Dirichlet-to-Dirichlet (DtD) ABCs with the application of z-transform and its inverse. Another is to formulate the definition of Neumann data for a general form of discrete operator based on the discrete Green formula. Combining the DtD mapping with Neumann data, we finally obtain the DtN-type ABCs. Furthermore, we perform the stability and convergence analysis of the truncated finite discrete system with DtN-type ABCs. Numerical examples are reported to demon- strate the accuracy and efficiency of the proposed approach. | ||
报告人简介 | 武汉大学数学与统计学院教授,博士生导师,2015年入选青年****。 2003和2006年在郑州大学获得学士和硕士学位,2009年在香港浸会大学获得博士学位。随后在南洋理工大学和纽约大学克朗所从事博士后研究,2014年5月在北京计算科学研究中心工作,2018年11月到武汉大学工作。现主持一项国家自然科学基金面上项目,并参与一项重点项目。主要研究领域包括偏微分方程和非局部模型的数值解法,以及神经科学的建模与计算。主要成果发表在SIAM Journal on Scientific Computing, SIAM Journal on Numerical Analysis,Mathematics of Computation, Journal of Computational Neuroscience等国际知名期刊上。 |