太阳成集团tyc234cc官网邀请专家申请表
报告人 | 向昭银 | 单位 | 电子科技大学数学科学学院 |
报告题目 | The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion | ||
报告时间 | 10.19日下午1:30-2:30 | 地点 | 腾讯会议:620 855 200 |
邀请人 | 李玉祥 | ||
报告人 简介 | 简介:向昭银,电子科技大学数学科学学院教授,1997.09-2001.07, 西华师范大学数学系, 本科; 2001.09-2006.06, 四川大学数学系, 研究生; 2006.09-2009.12, 电子科技大学, 博士后; 2006.07--, 电子科技大学数学科学学院, 讲师/副教授; 2008.12-2009.11, Johns Hopkins Univ., Visiting Scholar; 2010.03-2010.07, 北京应用物理与计算数学研究所, 访问学者; 2012.01-2012.02, 香港城市大学, Research Fellow. 研究兴趣: 偏微分方程/调和分析及其在图像处理中的应用等. 作为负责人受国家自然科学基金(数学天元青年基金、青年基金)、中国博士后科学基金(一等资助、首批特别资助)、教学部留学回国人员科研启动基金、中央高校基本科研业务费等资助; 入选四川省杰出青年学术技术带头人资助计划、四川省学术和技术带头人后备人选等. | ||
报告摘要 | In this talk, we investigate the stability of a fully parabolic-parabolic-fluid (PP-fluid) system of the Keller-Segel-Navier-Stokes type in a bounded planar domain under the natural volume filling hypothesis. In the limit of fast signal diffusion, we first show that the global classical solutions of the PP-fluid system will converge to the solution of the corresponding parabolic-elliptic-fluid (PE-fluid) system. As a byproduct, we obtain the global well-posedness of the PE-fluid system for general large initial data. We also establish some new exponential time decay estimates for suitable small initial data, which in particular ensure an improvement of convergence rate on time. To further explore the stability property, we carry out three numerical examples of different types: the nontrivial and trivial equilibriums, and the rotating aggregation. The simulation results illustrate the possibility to achieve the optimal convergence, and show the vanishment of the deviation between the PP-fluid system and PE-fluid system for the equilibriums, and the drastic fluctuation of error for the rotating solution. |